585 research outputs found

    Lattice Boltzmann Model for The Volume-Averaged Navier-Stokes Equations

    Full text link
    A numerical method, based on the discrete lattice Boltzmann equation, is presented for solving the volume-averaged Navier-Stokes equations. With a modified equilibrium distribution and an additional forcing term, the volume-averaged Navier-Stokes equations can be recovered from the lattice Boltzmann equation in the limit of small Mach number by the Chapman-Enskog analysis and Taylor expansion. Due to its advantages such as explicit solver and inherent parallelism, the method appears to be more competitive with traditional numerical techniques. Numerical simulations show that the proposed model can accurately reproduce both the linear and nonlinear drag effects of porosity in the fluid flow through porous media.Comment: 9 pages, 2 figure

    Contributions of natural and human factors to increases in vegetation productivity in China

    Get PDF
    Increasing trends in vegetation productivity have been identified for the last three decades for many regions in the northern hemisphere including China. Multiple natural and human factors are possibly responsible for the increases in vegetation productivity, while their relative contributions remain unclear. Here we analyzed the long-term trends in vegetation productivity in China using the satellite-derived normalized difference vegetation index (NDVI) and assessed the relationships of NDVI with a suite of natural (air temperature, precipitation, photosynthetically active radiation (PAR), atmospheric carbon dioxide (CO2) concentrations, and nitrogen (N) deposition) and human (afforestation and improved agricultural management practices) factors. Overall, China exhibited an increasing trend in vegetation productivity with an increase of 2.7%. At the provincial scale, eleven provinces exhibited significant increases in vegetation productivity, and the majority of these provinces are located within the northern half of the country. At the national scale, annual air temperature was most closely related to NDVI and explained 36.8% of the variance in NDVI, followed by afforestation (25.5%) and crop yield (15.8%). Altogether, temperature, total forest plantation area, and crop yield explained 78.1% of the variance in vegetation productivity at the national scale, while precipitation, PAR, atmospheric CO2 concentrations, and N deposition made no significant contribution to the increases in vegetation productivity. At the provincial scale, each factor explained a part of the variance in NDVI for some provinces, and the increases in NDVI for many provinces could be attributed to the combined effects of multiple factors. Crop yield and PAR were correlated with NDVI for more provinces than were other factors, indicating that both elevated crop yield resulting from improved agricultural management practices and increasing diffuse radiation were more important than other factors in increasing vegetation productivity at the provincial scale. The relative effects of the natural and human factors on vegetation productivity varied with spatial scale. The true contributions of multiple factors can be obscured by the correlation among these variables, and it is essential to examine the contribution of each factor while controlling for other factors. Future changes in climate and human activities will likely have larger influences on vegetation productivity in China

    The 2010 spring drought reduced primary productivity in southwestern China

    Get PDF
    Many parts of the world experience frequent and severe droughts. Summer drought can significantly reduce primary productivity and carbon sequestration capacity. The impacts of spring droughts, however, have received much less attention. A severe and sustained spring drought occurred in southwestern China in 2010. Here we examine the influence of this spring drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation greenness and productivity. We first assess the spatial extent, duration and severity of the drought using precipitation data and the Palmer drought severity index. We then examine the impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010. Our results show that the spring drought substantially reduced the enhanced vegetation index (EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and GPP also substantially declined in the summer and did not fully recover from the drought stress until August. The drought reduced regional annual GPP and net primary productivity (NPP) in 2010 by 65 and 46 Tg C yr−1, respectively. Both annual GPP and NPP in 2010 were the lowest over the period 2000–2010. The negative effects of the drought on annual primary productivity were partly offset by the remarkably high productivity in August and September caused by the exceptionally wet conditions in late summer and early fall and the farming practices adopted to mitigate drought effects. Our results show that, like summer droughts, spring droughts can also have significant impacts on vegetation productivity and terrestrial carbon cycling

    Interleukin-18 enhances vascular calcification and osteogenic differentiation of vascular smooth muscle cells through TRPM7 channel activation

    Get PDF
    Objective—Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Approach and Results—Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores (r=0.91; P<0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2, and osteocalcin (P<0.05). IL-18 increased TRPM7 expression through ERK1/2 signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18–enhanced osteogenic differentiation and VSMCs calcification. Conclusions—These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by ÎČ-glycerophosphate via TRPM7 channel activation. Accordingly, IL-18 may contribute to VC in proinflammatory conditions

    Metro Passenger Flow Forecast with a Novel Markov-Grey Model

    Get PDF
    Accurate forecasts of passenger flow entering and leaving metro stations is an important work for Metro operation management, such as for the automatic adjustment of train operation diagrams or station passenger crowd regulation planning measures. In this study, Grey theory is introduced to develop a time series GM (1, 1) model for total passenger forecasting. Two modification factors determined by two minimum mean square error principles are proposed to decrease the discreteness of input data and thus improve the forecast accuracy. Moreover, the Markov chain approach is further used to optimize the residual error series. Passenger flow data entering and leaving the Xiaozhai station of Xi'an Metro Line 2 from September 1-30, 2015, were utilized to verify the effectiveness of the proposed method; the forecast results show that this novel Markov-Grey model performs well in terms of forecast accuracy with smaller SMSE and MAPE values. To this effect, the proposed method is especially well-suited to smooth passenger flow forecasting compared to other forecast techniques

    Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model

    Get PDF
    Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and Grasslands (NFs) in the United States. However, few reliable continental-scale modeling tools are available to account for both water and carbon dynamics. The objective of this study was to test a monthly water and carbon balance model, the Water Supply Stress Index (WaSSI) model, for potential application in addressing the influences of drought on NFs ecosystem services across the conterminous United States (CONUS). The performance of the WaSSI model was comprehensively assessed with measured streamflow (Q) at 72 U.S. Geological Survey (USGS) gauging stations, and satellite-based estimates of watershed evapotranspiration (ET) and gross primary productivity (GPP) for 170 National Forest and Grassland (NFs). Across the 72 USGS watersheds, the WaSSI model generally captured the spatial variability of multi-year mean annual and monthly Q and annual ET as evaluated by Correlation Coefficient (R = 0.71–1.0), Nash–Sutcliffe Efficiency (NS = 0.31–1.00), and normalized Root Mean Squared Error (0.06–0.48). The modeled ET and GPP by WaSSI agreed well with the remote sensing-based estimates for multi-year annual and monthly means for all the NFs. However, there were systemic discrepancies in GPP between our simulations and the satellite-based estimates on a yearly and monthly scale, suggesting uncertainties in GPP estimates in all methods (i.e., remote sensing and modeling). Overall, our assessments suggested that the WaSSI model had the capability to reconstruct the long-term forest watershed water and carbon balances at a broad scale. This model evaluation study provides a foundation for model applications in understanding the impacts of climate change and variability (e.g., droughts) on NFs ecosystem service functions

    Human activities accelerated the degradation of saline seepweed red beaches by amplifying top‐down and bottom‐up forces

    Get PDF
    Salt marshes dominated by saline seepweed (Suaeda heteroptera) provide important ecosystem services such as sequestering carbon (blue carbon), maintaining healthy fisheries, and protecting shorelines. These salt marshes also constitute stunning red beach landscapes, and the resulting tourism significantly contributes to the local economy. However, land use change and degradation have led to a substantial loss of the red beach area. It remains unclear how human activities influence the top‐down and bottom‐up forces that regulate the distribution and succession of these salt marshes and lead to the degradation of the red beaches. We examined how bottom‐up forces influenced the germination, emergence, and colonization of saline seepweed with field measurements and a laboratory experiment. We also examined whether top‐down forces affected the red beach distribution by conducting a field survey for crab burrows and density, laboratory feeding trials, and waterbird investigations. The higher sediment accretion rate induced by human activities limited the establishment of new red beaches. The construction of tourism facilities and the frequent presence of tourists reduced the density of waterbirds, which in turn increased the density of crabs, intensifying the top‐down forces such as predators and herbivores that drive the degradation of the coastal red beaches. Our results show that sediment accretion and plant–herbivory changes induced by human activities were likely the two primary ecological processes leading to the degradation of the red beaches. Human activities significantly shaped the abundance and distribution of the red beaches by altering both top‐down and bottom‐up ecological processes. Our findings can help us better understand the dynamics of salt marshes and have implications for the management and restoration of coastal wetlands

    Components of domino tilings under flips in quadriculated cylinder and torus

    Full text link
    In a region RR consisting of unit squares, a domino is the union of two adjacent squares and a (domino) tiling is a collection of dominoes with disjoint interior whose union is the region. The flip graph T(R)\mathcal{T}(R) is defined on the set of all tilings of RR such that two tilings are adjacent if we change one to another by a flip (a 90∘90^{\circ} rotation of a pair of side-by-side dominoes). It is well-known that T(R)\mathcal{T}(R) is connected when RR is simply connected. By using graph theoretical approach, we show that the flip graph of 2m×(2n+1)2m\times(2n+1) quadriculated cylinder is still connected, but the flip graph of 2m×(2n+1)2m\times(2n+1) quadriculated torus is disconnected and consists of exactly two isomorphic components. For a tiling tt, we associate an integer f(t)f(t), forcing number, as the minimum number of dominoes in tt that is contained in no other tilings. As an application, we obtain that the forcing numbers of all tilings in 2m×(2n+1)2m\times (2n+1) quadriculated cylinder and torus form respectively an integer interval whose maximum value is (n+1)m(n+1)m

    NUMERICAL AND EXPERIMENTAL STUDY ON RESISTANCE OF ASYMMETRIC CATAMARAN WITH DIFFERENT LAYOUTS

    Get PDF
    It is meaningful to study the wave-resistance reduction of an asymmetric catamaran because of interference effects between the two sets of ship-generated waves. The influence of lateral separation and longitudinal stagger on the resistance and the wave interference are analyzed within this paper. Numerical calculations of resistance, sinkage and trim of the asymmetric catamaran are carried out for several Froude number ranging from 0.24 to 0.48, for six different lateral separations and four longitudinal staggers. Verification of numerical results is provided. The model tests are then carried out for three stagger distances to validate the numerical results. Results of this study indicate that the wave-resistance can be effectively reduced by certain hull layouts at different Froude numbers
    • 

    corecore